
Recherche dichotomique dans un tableau trié 

Introduction : un petit jeu

En début d'année, nous avons programmé ce petit jeu :

Vous pouvez y rejouer en copiant le code dans un IDE ou dans une console Basthon.

from random import randint
nb_mystere = randint(0,100)

print("Esssayez de trouver le nombre mystère")
nb_essais =0
trouvé = False

while not(trouvé):
choix = int(input("Entrer un nombre entre 0 et 100 :"))
nb_essais += 1
if choix > nb_mystere :

print("C'est trop grand")
elif choix < nb_mystere :

print("C'est trop petit")
else :

trouvé = True

print("Bravo ! Nombre de tentatives = ", nb_essais)

 >>> 

11
2
3
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

###

https://console.basthon.fr/
https://console.basthon.fr/


Quelle stratégie vous semble la plus pertinente pour trouver le nombre le plus rapidement possible ?

1- Rappel : Recherche séquentielle

Le tableau est une structure de données extrêmement utilisée en informatique.

Une des questions que l'on peut se poser est de savoir si une valeur appartient, ou non, à ce tableau.

Nous avons déjà vu l'algorithme de recherche séquentielle.



L'algorithme précédent est correct : on peut prouver qu'il fonctionne correctement dans tous les cas.

Nous avons admis que, comme l'algorithme de calcul de moyenne ou celui de calcul d'un minimum/

maximum, il est de complexité linéaire : le nombre moyen d'instructions effectuées et le temps moyen de

Algorithme de recherche séquentielle

def recherche_sequentielle(tab, val):
"""

    Entrées : 
    tab est un tableau
    val est une variable de même type que les éléments du tableau

    Sortie : un booléen qui vaut True si val appartient au tableau et False sino
    """

for k in range(len(tab)):
if tab[k] == val:

return True
return False

# Test de la recherche séquentielle 
from random import randint

taille = 50
tableau = [randint(1, taille) for k in range(taille)] # un tableau rempli de nom
print("Tableau :", tableau)
valeur = randint(1, taille) # un nombre choisi aléatoirement
print("Valeur :", valeur)

print(recherche_sequentielle(tableau, valeur))

 >>> 

11
2
3
2
3
4
5
6
7
8
9
10
11
12
13
14
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17
18
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20
21
22
23  

###



calcul sont proportionnels à la taille du tableau.

On peut vérifier expérimentalement que si la taille d'un tableau est multipliée par 100,

alors le temps de recherche séquentielle d'une valeur dans ce tableau est aussi

multiplié par 100 (approximativement).

De préférence, copier et exécuter ce code dans un IDE.

2 - Principe de la recherche dichotomique

Le fait qu'un tableau soit trié, par exemple par ordre croissant, facilite de nombreuses opérations.

Vérification expérimentale de la performance de la recherche séquentielle

from random import randint
from time import perf_counter

for taille in [10**4, 10**6]:
tab = [randint(1, taille) for k in range(taille)]
val_alea = randint(1, taille)

debut = perf_counter()
recherche_sequentielle(tab, val_alea)
fin = perf_counter()

print("Pour un tableau de taille n =", taille, "\n il faut "

>>> 

11
2
3
2
3
4
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7
8
9
10
11
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13  

###



Le fait de disposer d'un tableau déjà trié se produit par exemple quand on dispose d'enregistrements

chronologiques, comme ci-dessous dans le tableau des décollages d'avions dans un aéroport.

Supposons que l'on cherche à savoir si un décollage est prévu à 14h00 pile.

On peut lancer une recherche séquentielle du nombre 14.00  dans ce tableau.

Mais on peut tirer profit du fait que le tableau est déjà ordonné, déjà trié. Voici un procédé possible :

1. On commence par comparer la valeur recherchée (ici 14.00 ) avec la valeur située au milieu du

tableau (ici 13.37 ) :

2. Si la valeur recherchée est plus petite, on peut restreindre la recherche à la première moité du tableau.

3. Sinon, on la restreint à la seconde moitié du tableau.

4. Et on recommence, mais avec une partie du tableau deux fois plus petite. À chaque étape, on divise la

zone de recherche par deux à chaque étape : très rapidement, on parviendra soit à la valeur

recherchée, soit à un intervalle vide.

 Script Python

tab_departs = [(12.39, 'Londres'), (12.57,'Zurich'), (13.08,'Dublin'),
(13.21,'Casablanca'), 

(13.37,'Amsterdam'),(13.48,'Madrid'),(14.19,'Berlin'), (14.35,'New 
York'),

(14.54, 'Rome'), (15.10,'Stockholm')]



On appelle ceci une recherche dichotomique (en anglais : binary search).

Division de quelque chose en deux éléments que l'on oppose nettement. Exemple :

Dichotomie entre la raison et la passion.

Dans notre procédé de recherche par dichotomie, on fait une division du tableau trié en deux parties :

d'un côté la première moitié (composée des petites valeurs), de l'autre la seconde moitié (composée des

grandes valeurs).

3 - La méthode dichotomique, par l'exemple

Supposons que l'on recherche si la valeur 35 est présente ou non dans le tableau trié suivant : [5, 7, 

12, 14, 23, 27, 35, 40, 41, 45]

Les étapes de recherches sont schématisées ci-dessous, avec :

• debut qui marque le début de la zone de recherche.

• fin qui marque la fin de la zone de recherche.

• milieu, la valeur médiane entre le début et la fin de la zone de recherche. Cette valeur médiane

milieu  est le résultat du calcul de la moyenne entre debut  et fin , arrondie si besoin à l'entier

inférieur : milieu = (debut + fin) // 2

Définition du mot dichotomie du dictionnaire Larousse



Si vous préférez, voici une autre représentation de cette recherche, sous la forme d'un arbre :

Représenter les différentes étapes de la recherche dichotomique de la valeur 7 dans le

tableau [0, 1, 1, 2, 3, 6, 8, 12, 21]

Exercice



4 - Algorithme de recherche dichotomique d'un tableau trié

Remarques préliminaires :

• en entrée de l'algorithme, on fournit un tableau tab  qui est supposé trié par ordre croissant, ainsi

qu'une valeur val  à rechercher ;

• en sortie, l'algorithme doit renvoyer True  si la valeur val  est dans le tableau tab  et False  sinon.

Voici en pseudo-code l'algorithme de recherche par dichotomie :

Écrire le code Python de cet algorithme de recherche dichotomique.

 Pseudo-code

FONCTION Recherche_Dichotomique(tab,val)
    debut ← 0  # choix de numéroter à partir de zéro les cases du tableau
    fin ← longueur(tab) - 1
    TANT_QUE debut ⩽ fin
        milieu ← (debut + fin) // 2
        SI tab[milieu] = val ALORS
             RENVOYER VRAI
        SINON
            SI val > tab[milieu] ALORS
                debut ← milieu + 1
            SINON
                fin ← milieu - 1
            FIN_SI
        FIN_SI
    FIN_TANT_QUE
    RENVOYER FAUX

Exercice



Testons alors cet algorithme :

def recherche_dichotomique(tab, val):
"""

    Entrées : 
    tab est un tableau de nombres trié par ordre croissant 
    val est un nombre

    Sortie : un booléen qui vaut True si val appartient au tableau et False sinon
    """

# compléter le code

 >>> 

from random import randint

taille = 50
tableau = sorted([randint(1, taille) for k in range(taille)])
print("Tableau :", tableau)
valeur = randint(1, taille)
print("Valeur :", valeur)

print(recherche_dichotomique(tableau, valeur))

 >>> 
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###



5 - Efficacité, complexité de la recherche dichotomique

L'algorithme de recherche élaboré ci-dessus applique le principe "diviser pour régner" : à chaque étape

(si la valeur n'a pas encore été trouvée), la charge de travail est divisée par deux.

Inversement, si on multiplie par 2 la taille du tableau, il n'y aura besoin que d'une étape supplémentaire

pour y effectuer la recherche d'une valeur.

Puisqu'il ne faut qu'une étape pour faire une recherche dans un tableau de taille 2, on peut dresser le

tableau suivant :

Taille du

tableau

2 4 8 16 32 64

Nombre

maximal

d'étapes

1 2 3 4 5 6

On voit ainsi apparaitre le lien mathématique entre ces deux quantités : la taille  du tableau est égale à $

2^n$ où  est le nombre de d'étapes de l'algorithme.

Or ce que l'on cherche à connaitre, c'est la relation "inverse", à savoir le nombre d'étapes  en fonction de

la taille . En mathématiques, on parle de "fonction réciproque" et la fonction réciproque de la fonction "2 à

la puissance n" s'appelle la fonction logarithme de base 2.

Elle se note  (en mathématiques) et log2  en Python (avec le module math ) : on a donc ,

, etc.

t

n

n

t

log

2

log

2

(8) = 3

log

2

(16) = 4



from math import *
print("logarithme de base 2 de 16 : ", log2(16))

 >>> 

11
2
3
2
3

###



Le nombre maximal d'étapes de l'algorithme de recherche par dichotomie s'écrit alors

, où  est la taille du tableau. On dit que la recherche dichotomique est un

algorithme de complexité logarithmique.

Il est donc extrêmement efficace, bien plus efficace qu'un algorithme de complexité

linéaire.

On rencontrera parfois l'expression "complexité en ".

Mais n'oublions pas que l'utilisation d'une recherche dichotomique nécessite que le

tableau soit trié, et que le tri d'un tableau est une opération coûteuse (en temps). On ne

doit donc utiliser cet algorithme que dans le cas où l'on dispose d'un tableau

déjà trié.

6 - À retenir

1. Une recherche dichotomique ne peut se faire que sur un tableau trié.

Complexité logarithmique

n = log

2

(t) t

O(log

2

(t))



2. Une recherche dichotomique consiste à systématiquement découper la zone de recherche en deux

jusqu'à trouver (ou non) la valeur cherchée :

• La zone de recherche est délimitée par un indice de début et un indice de fin.

• On teste si la valeur médiane de cette valeur de recherche est égale à la valeur cherchée.

• Tant que l'on n'a pas trouvé la valeur cherchée, on restreint la zone de recherche en déplaçant

l'indice de début ou l'indice de fin.

• Si, à l'issue de ces redécoupages successifs, la zone de recherche se réduit à une seule valeur et

qu'on a toujours pas trouvé la valeur cherchée, c'est que la valeur est absente du tableau.

7 - Exercices



Adapter le programme de recherche dichotomique pour écrire une fonction

recherche_comptage(tab,val)  qui :

• prend en entrées un tableau tab  trié par ordre croissant et d'une valeur val

• renvoie un couple (tuple) (trouvé,nb_tours)  composé

• d'un booléen trouvé  qui vaut True  si la valeur val  appartient au tableau

et False  sinon

• du nombre entier nb_tours  égal au nombre de tours de la boucle while

qu'il a fallu effectuer dans cette recherche dichotomique.

Ne pas oublier de tester votre fonction.

Exercice 1

 >>> 

11
2
3
2
3

###



Adapter l'algorithme de recherche dichotomique pour pouvoir traiter le tableau de

couples de la partie 2, où le premier élément des couples est l'heure de décollage d'un

avion et où le tableau est déjà trié par ordre croissant d'horaire.

Exercice 2 : recherche dichotomique dans un tableau de couples

def recherche_dichotomique_couple(tab,val):
"""

    Entrées : 
    tab est un tableau de couples (nombre, texte), trié par ordre croissant 
    val est un nombre

    Sortie : un booléen qui vaut True si val est un nombre d'un couple du tablea
    """

# compléter le code

# test de la fonction
tab_departs = [(12.39, 'Londres'), (12.57,'Zurich'), (13.08,'Dublin'

(13.37,'Amsterdam'),(13.48,'Madrid'),(14.19,'Berlin'
(14.54, 'Rome'), (15.10,'Stockholm')]

assert recherche_dichotomique_couple(tab_departs,14.00) == False

 >>> 

11
2
3
2
3
4
5
6
7
8
9
10
11
12
13
14
15  

###



Quand on trace la fonction  définie par la formule , on constate

que :

•  et 

• la fonction s'annule une fois entre 1 et 2.

On veut trouver une valeur approchée, au millionième près, de ce nombre inconnu

 qui vérifie .

1°) On commence par définir en Python la fonction f  :

Exercice 3 : une autre application de la dichotomie

f f(x) = x

3

+ x − 4

f(1) < 0 f(2) > 0

x

0

f(x

0

) = 0

 Script Python



2°) Puis on va procéder par dichotomie :

On définit les variables :

• debut , qui marque le début de la zone de recherche, est égal à 1 au départ ;

• fin , qui marque la fin de la zone de recherche, est égal à 2 au départ ;

• milieu est la moyenne entre debut  et fin  : (debut + fin) / 2

Et on applique l'algorithme suivant :

Programmer cet algorithme en Python et déterminer la valeur approchée à  de ce

nombre .

Combien de tours de boucle TANT QUE  ont été nécessaires pour obtenir cette valeur

de  ?

def f(x):
y = x**3 + x-4
return y

 Pseudo-code

TANT_QUE fin - debut > 1e-6 # précision demandée de un millionième
    milieu ← (debut + fin) / 2
    SI f(milieu) = 0 ALORS
        AFFICHER milieu
    SINON
        SI f(milieu) < 0 ALORS
            debut ← milieu
        SINON
            fin ← milieu
FIN_TANT_QUE
AFFICHER milieu

10

−6

x

0

x

0



8 - QCM

Partie 1

On considère le code suivant de recherche d'une valeur dans une liste :

 >>> 

 Script Python

def search(x, tab):
# x est la valeur à chercher
# tab est une liste de valeurs
for k in range(len(tab)):

if x == tab[k]:
return True

return False

11
2
3
2
3

###



• Quel est le coût de cet algorithme ?

constant

logarithmique

linéaire

quadratique

On reconnait ici l'algorithme de recherche séquentielle, qui a un coût proportionnel à la

taille du tableau : on parle alors d'un coût linéaire.

Partie 2

Question

Explication



Questions



1. Pour pouvoir  utiliser un algorithme de recherche par dichotomie dans une liste,

quelle précondition doit être vraie ?

la liste doit être triée

la liste ne doit pas comporter de doublons

la liste doit comporter uniquement des entiers positifs

la liste doit être de longueur inférieure à 

2. La fonction ci-dessous permet d'effectuer une recherche par dichotomie de l'index

m  de l'élément x  dans un tableau L  de valeurs distinctes et triées.

Combien de fois la cinquième ligne du code de la fonction ( m = (g+d)//2 ) sera-

t-elle exécutée dans l'appel dicho(32, [4, 5, 7, 25, 32, 50, 51, 60])  ?

1 fois

2 fois

3 fois

4 fois

2

10

 Script Python

def dicho(x,L):
g = 0
d = len(L)-1
while g <= d:

m = (g+d)//2
if L[m] == x:

return m
elif L[m] < x:

g = m+1
else:

d = m-1
return None



3. On décide d'effectuer une recherche dans un tableau trié contenant 42000 valeurs.

On procède par dichotomie.

Le nombre maximal d'itérations de l'algorithme sera :

21000 car une recherche dichotomique divise le nombre de tests maximal

par deux

42000  car  la  valeur  recherchée  pourrait  très  bien  être  la  dernière  du

tableau

41999  car  si  on  n'a  pas  trouvé  l'élément  recherché  à  l'avant-dernière

position du tableau, il n'est plus utile d'effectuer de test pour la dernière

position

16 car à chaque itération, le nombre d'éléments à examiner est divisé par

deux et que 

4. Un algorithme de recherche dichotomique dans une liste triée de taille  nécessite,

dans le pire des cas, de réaliser  comparaisons.

Combien cet algorithme va-t-il effectuer, dans le pire des cas, de comparaisons sur

une liste de taille  ?

2 × 

2 ×

2

15

⩽ 42000 < 2

16

n

k

2imesn

k

k + 1

k

(k + 1)


