Chapitre 12 : Variables aléatoires réelles

I) Variable aléatoire et loi de probabilité

<u>Définition</u>: Soit Ω l'ensemble des issues (l'univers) d'une expérience aléatoire. Une variable aléatoire réelle sur Ω est une fonction qui associe à chaque issue de Ω un nombre réel.

Notations : L'événement "X = a" est alors l'ensemble des issues de Ω qui ont pour résultat : a.

On peut également définir des événements du type "X > a" ou encore " $X \le a$ ".

<u>Définition</u>: Définir une **loi de probabilité** sur une variable aléatoire, c'est associer à chaque valeur possible de X la probabilité de l'événement concerné.

Exemple 1 : On joue trois fois de suite à "Pile ou Face" en pariant à chaque fois 1€ sur "Pile". On définit une variable aléatoire X prenant pour valeur le gain total après les trois parties.

Dessinez l'arbre des possibles de cette situation :

Donnez alors la loi de probabilité de X :

Valeurs		
$\mathbf{X}_{\mathbf{i}}$		
$P(X=x_i)$		

Exercice nº 1

Un jeu consiste à lancer trois fois une pièce de monnaie bien équilibré. Chaque pile obtenu rapporte $3 \in \text{et}$ chaque face fait perdre $2 \in \mathbb{R}$.

- 1. Quels sont les gains (ou pertes) possibles?
- 2. On note G le gain algébrique du joueur. Donner la loi de probabilité de G.

<u>Définition</u>: L'**espérance** de X est le nombre réel, noté E(X), tel que :

$$E(X) = \sum_{i=1}^{n} x_i \times p_i = x_1 \times p_1 + x_2 \times p_2 + ... + x_n \times p_n$$

Remq : C'est une **moyenne** lorsque l'expérience aléatoire est répété un grand nombre de fois.

<u>Définition</u>: La variance de X est le nombre réel, noté V(X), tel que :

$$V(X) = \sum_{i=1}^{n} (x_i - E(X))^2 \times p_i = (x_1 - E(X))^2 \times p_1 + (x_2 - E(X))^2 \times p_2 + ... + (x_n - E(X))^2 \times p_n$$

L'écart-type de X est le nombre réel, noté $\sigma(X)$, tel que : $\sigma(X)$ =

Remq: C'est une moyenne quadratique des écarts des valeurs avec l'espérance.

Exemple: Calculer E(X) et $\sigma(X)$ dans le cas suivant :

Valeurs	4	6	9	15
X_i				
$P(X=x_i)$	0,2	0,15	0,35	

$$E(X) =$$

$\sigma(X) =$

Exercice 2:

Calculer E(x) et $\sigma(X)$ de l'exercice 1

On donne dans le tableau ci-dessous la loi de probabilité d'une variable aléatoire $\, {
m X} \, .$

x_{i}	-2	а	3
$\mathbf{P}(\mathbf{X} = \boldsymbol{x}_i)$	2 7	4 9	p

- **1.** Déterminer la valeur de $\,p$.
- **2.** Quelle valeur faut-il donner à a pour que E(X) = 2 ?
- 3. Calculer Var(X) et $\sigma(X)$.

BILAN:

Une urne contient $150\,$ jetons rouges et $50\,$ jetons bleus, tous indiscernables au toucher. $20\,$ % des jetons rouges sont gagnants et $40\,$ % des jetons bleus sont gagnants. Un joueur tire au hasard un jeton de l'urne.

Question 1

La probabilité que le jeton soit rouge et gagnant est :

a) 0,2 b) 0,45 c) 0,15 d) 0,95

Question 2

La probabilité que le jeton soit gagnant est :

	a) 0,2	b) 0,6	c) 0,25	d) 0,4	
- 1		l .			4

Question 3

Un joueur tire successivement et avec remise deux jetons de l'urne. La probabilité qu'il tire deux jetons rouges est :

a) 0,5625	b) 0,75	c) 0,30	d) 0,15	
-----------	----------------	---------	----------------	--

On note X la variable aléatoire qui représente le gain algébrique en euros d'un joueur. La loi de probabilité de X est donnée par le tableau suivant :

Valeurs a prises par $\mathbf X$	-5	0	10
P(X = a)	0,6	0,15	0,25

Question 4

La probabilité P(X > 0)est égale à :

a) 0,15	b) 0,6	c) 10	d) 0,25
---------	---------------	--------------	----------------

Question 5

Le gain algébrique moyen en euros que peut espérer un joueur est égale à :

a) 0 b) -0,5	c) $\frac{5}{3}$	d) 5
--------------	------------------	------