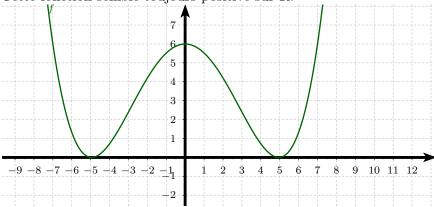
Exercice nº 1

On a tracé la courbe représentative \mathcal{C}_f de la fonction f définie sur $\mathbb R$ par

$$f(x) = \frac{x^4}{100} - \frac{49x^2}{100} + 6.$$

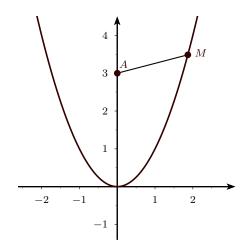
Cette fonction semble toujours positive sur \mathbb{R} .



- 1. Calculer f'(x), la fonction dérivée de f.
- **2.** Vérifier que $f'(x) = \frac{x}{100} (4x^2 98)$.
- 3. Étudier le signe de f'(x) et en déduire le tableau de variation de f.
- 4. A partir de cette étude, peut-on confirmer la conjecture ? Expliquer en utilisant le vocabulaire de la leçon.

Exercice nº 2

Dans le repère orthonormé ci-dessous, on note \mathcal{P} , la courbe représentative de la fonction carrée, A(0;4) et M un point situé sur \mathcal{P} . On cherche à déterminer les coordonnées de M tels que la distance AM soit minimale.



Partie A

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^4 - 7x^2 + 16$

- 1. Étudier les variations de f sur \mathbb{R} .
- **2.** En déduire le minimum de f sur \mathbb{R} .

Partie B

- 1. Soient x un nombre réel et M un point de \mathcal{P} de coordonnées $(x; x^2)$. Montrer que $AM^2 = x^4 7x^2 + 16$
- 2. Montrer que qu'il existe deux points M_1 d'abscisse négative et M_2 d'abscisse positive qui répondent au problème.
- **3.** Montrer que la tangente à \mathcal{P} au point d'abscisse $\sqrt{\frac{7}{2}}$ est perpendiculaire à (AM_1) .

Partie C

- 1. Montrer que (AM_1) a pour équation cartésienne $-\sqrt{14}x + 14y 56 = 0$.
- **2.** Déterminer une équation cartésienne de (AM_2) .
- 3. Déterminer une équation cartésienne de la droite d_1 perpendiculaire à (AM_1) passant par M_1 .
- 4. Déterminer une équation cartésienne de la droite d_2 perpendiculaire à (AM_2) passant par M_2 .
- 5. Déterminer les coordonnées du point B intersection de d_1 et d_2 .
- 6. Dans un repère orthonormé, tracer précisément l'ensemble des points et droites de l'exercice.
- 7. Déterminer l'aire exacte du quadrilatère M_1AM_2B .
- 8. Déterminer l'angle \hat{B} au centième de degré près.